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SUMMARY

In this paper, the local radial point interpolation meshless method (LRPIM) is used for the analysis of two-
dimensional potential flows, based on a local-weighted residualmethodwith theHeaviside step function as the
weighting function over a local subdomain. Trial functions are constructed using radial basis functions. The
present method is a truly meshless method based only on a number of randomly located nodes. Integration
over the subdomains requires only a simple integration cell to obtain the solution. No element matrix
assembly is required and no special treatment is needed to impose the essential boundary conditions. The
novelty of the paper is the use of a local Heaviside weight function in the LRPIM, which does not need
local domain integration and integrations only on the boundary of the local domains are needed. Effects
of the sizes of local subdomain and interpolation domain on the performance of the present method are
investigated. The behavior of shape parameters of multiquadrics has been systematically studied. Two
numerical tests in groundwater and fluid flows are presented and compared with closed-form solutions and
finite element method. The results show that the use of a local Heaviside weight function in the LRPIM
is highly accurate and possesses no numerical difficulties. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite element method (FEM) has been established as a very powerful numerical technique for
the analysis of space domain problems having arbitrary shapes. However, it has some drawbacks.
It has been observed that in the FEM, mesh generation is a far more time-consuming and expensive
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task than the assembly and solution of the finite element equations. Moreover, there are certain
classes of problems for which FEM is difficult, or even impossible to apply, such as problems
with discontinuities, moving boundaries, or severe deformations [1]. For such problems, it has
become necessary to find the methods that may be slightly more expensive from the viewpoint of
computer time but require less time in the preparation of data. Recently, a class of new methods,
known as meshless methods, has been developed. The so-called mesh-free methods have become
a very attractive alternative for computer modeling and simulation of problems in engineering and
sciences. These methods do not require a mesh to discretize the problem domain. The approximation
functions are constructed entirely using a set of scattered nodes, and no element or connectivity
of the nodes is needed.

Various meshless methods belonging to this family are smooth particle hydrodynamics [2, 3],
diffuse element method [4], reproducing kernel particle method [5], the method of finite spheres [6],
free mesh method [7], local boundary integral equation method [8], the partition of unity method [9],
element-free Galerkin (EFG) method [10–16], natural element method [17] and natural neighbor
Galerkin method [18], the meshless local Petrov–Galerkin (MLPG) method [19, 20] and the local
radial point interpolation meshless method (LRPIM) [21–25]. The methods based on global weak
form (GWF) showed promising results, but they suffer a drawback. They are not truly meshless
methods, i.e. they are ‘meshless’ only in terms of the interpolation of the field variables and have
to use background cells to integrate a weak form over the problem domain. The MLPG method
does not need any ‘element’ or ‘mesh’ for either field interpolation or background integration, and
any non-element interpolation scheme such as the moving least square [26], the PUM or the radial
basis functions (RBFs) can be used for trial and test functions. The flexibility in choosing the
size and the shape of the local subdomain leads to a convenient formulation in dealing with non-
linear problems. Particularly, the local Heaviside-weighted MLPG together with RBFs interpolation
[27, 28] showed great promise for steady problems because only a regular boundary integral along
the edges of subdomains is involved and no special treatment on imposing essential boundary
condition is needed. On methods that use the local boundary integration, there is also a new and
interesting development by Liu et al. [29]. Liu et al. [30–32] have found that the integrations (in
the local domain or on the boundary of the domain) for all the internal nodes are not necessary
for many problems, and the integrations are needed only for the local domain of the nodes near
the problem domain. This led to the development of the mesh-free weak–strong method for both
solid and fluid problems.

The LRPIMmeshless method developed was first presented by Liu et al. [21–25]. Trial functions
are constructed using RBFs. Liu was the first researcher who used arbitrary shape parameters in
RBFs. As LRPIM can be regarded as a local-weighted residual method, the weight function plays an
important role in the performance of thismethod.We have used the trulymeshless LRPIM for solving
two-dimensional potential flows using a local Heaviside weight function. In the LRPIM, the function
over the solution domain requires only a set of nodes and does not require element connectivity.
Integration over the subdomains requires only a simple integration cell to obtain the solution. The
results are obtained for a model problem and compared with the results of exact method and FEM.

2. RBF INTERPOLATION

The local interpolation using RBFs [33, 34] enables trial functions to pass through the actual values
of the unknown variables at scattered nodes. The later one is used in this study.
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A continuous function u(x) defined in a domain � discretized by a set of nodes can be
interpolated from the neighboring nodes of a point xQ using RBFs as

uh(x, xQ)=
n∑

i=1
Ri (x)ai (xQ)= RT(x)a(xQ) (1)

where Ri (x) is the RBF in the space coordinates xT=[y, z], n is the number of nodes in the
neighborhood (refers to the domain of interpolation) of xQ , and ai (xQ) are the coefficients for
Ri (x), respectively, corresponding to the given point xQ . It should be noted that the number n of
the neighboring nodes of xQ is less than or equal to the total number of nodes in the global problem
domain n depending on the size of the support domain specified. The vectors are defined as

a=[a1,a2,a3, . . . ,an]T (2)

RT=[R1(x), R2(x), R3(x), . . . , Rn(x)]T (3)

The radial distance function in a vertical two-dimensional domain is a function of Euclidean
distance r defined as

ri =[(x−xi )
2+(y− yi )

2]1/2 (4)

The radial distance function transforms a multiple-dimensional problem into one dimension.
Enforcing the interpolation to pass through all n-scattered points within the point xQ support
domain leads to the following set of equations for the coefficients ai (xQ):

uk =u(xk, yk)=
n∑

i=1
ai (xQ)Ri (xk, yk), k=1,2,3, . . . ,n (5)

which can be expressed in matrix form as follows:

RQa=Us (6)

where Us =[u1,u2,u3, . . . ,un] and RQ is the interpolation matrix of rank (n×n) as follows:

RQ = RT
Q =

⎡
⎢⎢⎢⎢⎢⎣

R1(r1) R2(r1) . . . Rn(r1)

R2(r2) R2(r2) . . . Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) . . . Rn(rn)

⎤
⎥⎥⎥⎥⎥⎦ (7)

The coefficients can be obtained as

a= R−1
Q Us (8)

where R−1
Q is the inverse matrix of RQ .

Finally, the interpolation can be expressed as

uh(x)= RT(x)R−1
Q Us =�(x)Us (9)
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Figure 1. Shape functions for two-dimensional domain (9 nodes): (a) domain and nodal arrangement;
(b) shape function of central node (node 5); (c) shape function derivative in the x direction of central
node; (d) shape function derivative in the y direction of central node; (e) shape function for an edge node

(node 8); and (f) shape function for a corner node (node 7).

where the matrix of shape functions �(x) is defined as

�(x) = [R1(x), R2(x), . . . , Rk(x), . . . , Rn(x)]R−1
Q

= [�1(x),�2(x), . . . ,�k(x), . . . ,�n(x)] (10)
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in which

�k(x)=
n∑

i=1
Ri (x)S

a
ik (11)

and Saik is the (i,k) element of the matrix R−1
Q . The derivatives of �k(x) can be obtained as follows:

��k

�x
=

n∑
i=1

�Ri

�x
Saik (12)

��k

�y
=

n∑
i=1

�Ri

�y
Saik (13)

There are several RBFs available. The most important three RBFs consisting multiquadrics (MQ),
Gaussian (EXP), and thin plate splines (TPS) are as follows:

Ri (x, y)=(r2i +(�cdc)
2)q , �c�0 (MQ) (14)

Ri (x, y)=(ri )
� logri (TPS) (15)

Ri (x, y)=e−c2r2i (EXP) (16)

where q , �c, and � are the shape parameters that are used for fine tuning. The MQ-RBF is studied
in this article. The partial derivatives of the MQ-RBF can be obtained as follows:

�Ri

�x
=2q(r2i +(�cdc)

2)q−1(x−xi ) (MQ)

�Ri

�y
=2q(r2i +(�cdc)

2)q−1(y− yi ) (MQ)

(17)

Figure 1 shows typical shape functions for a two-dimensional problem using MQ basis with an
interpolation domain containing 3×3 nodes only in a [−1,1]×[−1,1] x–y space. The shape
parameters are chosen to be �c=1.42 and q=1.03. For better compatibility, the dimensionless
size of support domain is �s =3.5. All the shape functions satisfy the delta function property and
as is obvious both shape function and its derivatives are smooth functions and unlike FEM need
no smoothing technique. It should be noted that the 9-node domain in Figure 1 is in the sense of
a local domain surrounded by other nodes and the shape functions have zero value for any points
immediately outside the local domain. If the global domain is discretized with these 9 nodes, the
local domain is equal to the global domain.

3. LOCAL WEAK FORM

Meshless methods that use a weak form of equations are categorized into GWF and local weak form
(LWF). EFG and RKPM are examples of global weak methods over the entire domain � whereas
LRPIM uses LWF of equations over a local subdomain of arbitrarily shaped �Q called quadrature
domain, which is located entirely inside the global domain �. This is the most distinguishing feature
of the LRPIM meshless method. In comparison to the GWF methods, the LWF will provide a clear
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480 I. SAEEDPANAH AND E. JABBARI

concept for a local meshless integration of the weak form, which does not need any background
integration cells over the entire domain. In addition, it will lead to a natural way to construct the
global stiffness matrix: not through the integration over a contiguous mesh or by assembly of the
stiffness matrices of the elements in the mesh but through the integration over local subdomains.
Consider the following two-dimensional Poisson equation, which is the governing equation in this
paper, in a domain � bounded by �:

�2u
�x2

+ �2u
�y2

= P(x, y) (18)

where u is the field variable and P is the body force field. The domain � is enclosed by �=�u∪�q ,
with boundary conditions. The boundary conditions are given as follows:

�u
�n

=∇ ·n=q on �q (19a)

u=u on �u (19b)

where �q is the boundary with predefined flux, �u is the essential boundary, n is the unit outward
normal to the domain �, and q is the flux over the boundary.

A LWF of Equation (18), over a local subdomain �Q bounded by �Q , can be obtained using
the weighted residual method:

∫
�Q

W

(
�2u
�x2

+ �2u
�y2

−P(x, y)

)
d�=0 (20)

where W is the test function. It should be noted that there are neither Lagrange multipliers nor
penalty parameters introduced in Equation (20) because, as mentioned earlier, the shape functions
satisfy the Kronecker delta property and, hence, the essential boundary condition can be imposed
directly, as done in FEM. Using the divergence theorem in Equation (20) and imposing the natural
boundary condition, the following local symmetric weak form (LSWF) can be obtained:

∫
�Q

(W,xu,x +W,yu,y)d�−
∫

�Qi

W
�u
�n

d�−
∫

�Qu

W
�u
�n

d�=−
∫

�Q

W P d�+
∫

�Qq

Wq d� (21)

where �Qq is a part of �Q , over which the natural boundary condition is specified; �Qu is the
intersection of �Q and the essential boundary �u ; �Qi is the internal part of �Q on which no
boundary condition is specified, as shown in Figure 2. For a quadrature domain located entirely
within the global domain, there is no intersection between �Q and �, and the integrals over �Qu
and �Qq vanish. The support subdomain �Q of a node xi is a domain in which Wi (x) �=0. An
arbitrarily shaped support domain can be used. Generally, a circle or rectangular support domain
is used for convenience. For an internal node, the integration can be done numerically within
the local domain. For a node on or near the boundary, only a local mesh is required. Therefore,
no global background mesh is required. Different local test functions can be used in the weak
form (21), which leads to different ways to construct the global stiffness matrix [35, 36]. The
Heaviside step function is used as the test function in this research. Thus, the LWF (21) can be
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Figure 2. The support domain and the quadrature domain in constructing
the discretized equation for node I.

rewritten as ∫
�Qi

�u
�n

d�+
∫

�Qu

�u
�n

d�=
∫

�Q

P d�−
∫

�Qq

q d� (22)

It can be seen that the domain integral in the weak form (22) is avoided and only the regular
boundary integral along the boundaries of subdomains is involved. The LSWF, Equation (22),
gives one algebraic equation relating all. Therefore, we need as many local domains �Q as the
number of nodes in the global domain.

4. DISCRETIZATION AND NUMERICAL IMPLEMENTATION

The LWF is based on the quadrature domain �Q centered on each nodal point xi . The shapes of
quadrature domains can be chosen arbitrarily, such as a circle or a rectangle for two-dimensional
problems. If the nodal points xi and the support domain of the nodal shape functions for the trial
function are given, then the subdomain weak form can be constructed for each quadrature domain
�Q . There is no restriction on the size of the quadrature domains or the support domains of the
nodal shape functions for the trial function. The quadrature domains can be taken to be different
from the supports of the nodal trial shape functions. Provided the union of all quadrature domains
covers the global domain, the equilibrium equation and the boundary conditions will be satisfied
in the global domain and on its boundary. For certain cases, as will be shown in this paper, the
union of all subdomains can be smaller than the global problem domain. However, the union of
all supports of the nodal trial shape functions must cover the global domain in all cases, so that
the connections between different quadrature domains can always be secured.

Assume that the problem domain � is represented by properly scattered nodes. The unknown
variable u in this LSWF is approximated by the nodal shape functions (10). To obtain the discrete
equations from the LSWF (22), the RBF interpolation (9) is adopted to approximate the trial
function u. Substitution of Equation (9) into Equation (22) for all nodes leads to the following
discretized system of linear equations:

[K ]{u}={ f } (23)
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where [K ] and { f } are the ‘stiffness’ matrix and the ‘load’ vector, respectively, defined as

KIJ =
∫

�Qi

�J,xnx +�J,yny d�+
∫

�Qu

�J,xnx +�J,yny d� (24)

f I =
∫

�Q

P(x, y)d�−
∫

�Qq

q d� (25)

The Gauss quadrature is employed in each local subdomain centered at node xi . For each Gauss
quadrature point xQ , RBF is performed to obtain the integrand. Therefore, for a node xi , there are
two local domains: the test function domain �te (same as the local subdomain �Q) for Wi �=0 (size
rQ) and the interpolation domain �s for xQ (size rs). Figure 2 shows the quadrature domain �Q
of a node xi and the support domain �s for a Gauss point xQ . These two domains are independent
and defined as

rQ =�Qdc, rs =�sdc (26)

where �s and �Q are dimensionless coefficients and dc, known as characteristic length, is the
shortest spacing between node I and its closest neighbor nodes or the global boundary, whichever is
smaller. Parameters including shape parameters of RBFs and parameters related to LRPIM (support
and subdomain size) should be tuned. According to Professor G. R. Liu’s recommendation the shape
parameters are chosen to be �c=1.42 and q=1.03. For better compatibility, the dimensionless
size of support domain is �s =3.7 [35, 36].

As mentioned before, because the shape functions constructed by RBFs possess the delta function
property, the essential boundary condition can be implemented easily and the terms in the row of
the matrix K for the nodes on the essential boundary need not be computed, which reduces the
computing cost.

5. NUMERICAL TESTS

In this section, numerical results will be presented to illustrate the implementation and convergence
of the LRPIM meshless method. Systematic parametric studies are also performed on shape
parameters of the extended MQ. In all examples, the body forces are set to be 0. For the purpose
of error estimation and convergence studies, the L2 norm is defined as follows:

‖L2‖=
{∫

�
(uLRPIM−uexact)T(uLRPIM−uexact)d�

}1/2
(27)

where uLRPIM and uexact are the field variables computed by the LRPIMmethod and the closed-form
solution.

6. GROUNDWATER FLOW

One of the important contributions, illustrating the power of mathematical tools, was Toth’s [37, 38]
work on the influence of water-table configuration on flow in groundwater basins. His analytical
approach allowed him to test different water-table configurations and determine what types of
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Figure 3. A two-dimensional region with boundary conditions for regional flow.

groundwater flow patterns emerged. The case that Toth considered was flow in a basin with a linear
sloping water-table as shown in Figure 3. Toth [37] formulated this problem for a two-dimensional
cross section oriented parallel to the likely direction of regional flow in a groundwater basin.

The boundary conditions have no flow boundary condition at left, right, and bottom boundaries:

�h
�x

∣∣∣∣
x=0

=0,
�h
�x

∣∣∣∣
x=s

=0,
�h
�z

∣∣∣∣
z=0

=0 (28)

However, the hydraulic head is identified at the top boundary:

h= z0+cx (29)

where z0 is the hydraulic head at x=0 and c is the slope of water-table. In this study, c=0.05 and
z0=100 are adopted. An analytical solution to the problem was given by Toth [37] as follows:

h= z0+ cs

2
−

∞∑
m=0

cos[(2m+1)�x/s]cosh[(2m+1)�z/s]
(2m+1)2 cosh[(2m+1)�z0/s] (30)

Figure 4 shows the results for �c=5.25, q=1.98 by MQ RBF in a 22∗11 nodal domain. In
all computations, �Q =0.85 and �s =3.5 are considered; the number of segments on quadrature
domain boundary is 4; and GQ6 scheme is employed for integration in each direction.

6.1. Shape parameters of MQs

The choice of shape parameters for MQ basis function has been well studied by a number of
researchers [33, 34, 39–44]. Optimal values of q=1.03 and �c=1.42 were identified in [33, 34],
where they used RBFs in EFG. We will further determine the optimal shape parameters in the
Toth groundwater problem in this section. In the study, we limit our investigation on the shape
parameters to q ranging from −0.5 to 2.25 and �c ranging from 0.3 to 7. Taking �Q =0.85 and
�s =3.5, the variation of L2 norm errors of head with shape parameters is given in Figure 5.

It can be seen in Figure 5(a) that q=0.98, 1.03, and 1.98 leads to better accuracy. It should be
noted that q cannot be an integer; otherwise the moment matrix will be singular. From Figure 5(b),
it can be seen that, for most q values, the accuracy is sensitive to the shape parameter �c. However,
for the values q=1.03 and 0.98, despite higher accuracy, the accuracy is less sensitive to �c in
the range [4.8,6.2]. As shown in Figure 5(b), we cannot find �c=1.42 to be an optimal value
but �c=5.25 to be optimal. Consequently, we will further employ MQ-RBF with q=0.98 and
�c=5.25.
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Figure 4. LRPIM results: (a) domain and nodal arrangements; (b) relative error; and
(c) approximated function head contour.
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Figure 5. Effect of shape parameters q , �c, L2 norm error for multiquadric RBF:
(a) shape parameter q and (b) shape parameter �c.

6.2. Effects of the size of subdomain

In subdomain-based meshless methods, the size of the quadrature domain used will affect the
accuracy of the solution. In this paper, we limit the quadrature domain size as being larger than
zero and less than one. It should be noted that when �Q =0 the present method converts to the
point collocation method. Limiting the quadrature domain size as less than one makes integration
of Equation (22) for internal nodes simpler because there is no intersection between the internal
quadrature domains and the global boundary. When �s is less than 0.5, there is no overlap between
quadrature domains, and quadrature domains overlap each other when �s is between 0.5 and 1.

Quadrature domains with different sizes are examined and the L2 errors of potential head are
plotted in Figure 6 with q=0.5,0.98,1.03, and 1.98. The size of the interpolation domain is taken
as �s =3.5 and �c is taken as 5.25. It can be seen that excellent accuracy is obtained when �Q
varies from 0.1 to 1 for q=0.98, 1.03, and 1.98. However, in most calculations except those in this
subsection we use the parameter as �Q =0.75, allowing overlap between the quadrature domains,
which may give more reliable results for most cases.
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Figure 6. Effect of quadrature domain parameters �Q for MQ-RBF.
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Figure 7. Influence of the support domain size �s for MQ-RBF for different values of q .

6.3. Effects of the size of interpolation domain

The size of the support (or interpolation) domain plays a very important role in all meshless
methods. It is related to both the accuracy of the solution and the computational efficiency of
the method. The errors of L2 norms for �s =1.5–7 are obtained and plotted in Figure 7 for
q=0.5,0.98,1.03, and 1.98, respectively.

It can be seen that if �s is less than 2, the results are not acceptable simply because there
are not enough nodes to perform interpolation. For q=1.98, the results are less satisfying due to
ill-conditioning of moment matrix. When �s is larger than 2, the results of q=0.5 are acceptable
and also q=0.5 is of higher accuracy out of [2.5,5.1] than q=1.98. The results of q=1.03 and
0.98 show good satisfaction in the range [3.5,7]. In implementation, as the value of �s increases,
the bandwidth of moment matrix A increases and, consequently, leads to inefficient computation.
In addition, a small bandwidth means lower complexity, but larger errors.

It is worth noting that the research by Liu and Gu [21–23] showed large errors with �s>3.5
and recommended �s =1.5–3 for defining the interpolation domain size (15–40 nodes used in an
interpolation domain). In this research, we examined interpolation domain sizes �s up to 7 (more
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than 150 nodes included for performing interpolation), and there is no problem at all when the
interpolation size is larger than 3.5 up to 5. As shown, a value of �s =4.2 may be optimal for
q=1.03 and 0.98. In advance, �s =4.2 is adopted for further computation.

6.4. Convergence rate and effect of node density

The convergence with mesh refinement of the present method is studied in this section and
compared with the Lagrangian triangular FEM results. The results of convergence rates are shown
in Figure 8.

Four values 0.5,0.98,1.03, and 1.98 were used for the shape parameter q . In this study, we
choose �c=5.25, �Q =0.75 and �s =4.2, which were identified as optimal values. Six different
node densities of 45(5∗9), 120(8∗15), 276(12∗23), 630(18∗35), 1127(24∗47), and 2016(32∗63)
are used. The L2 norms are evaluated using 20∗10(200) cells with 6∗6(36) Gauss quadrature
points for each cell. The error norms with the convergence rates are given in Table I. It can be
seen that both the convergence rates of q=1.03 and 0.98 are the best, and the convergence rate
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Figure 8. Convergence rates in L2 norm for MQ-RBF and FEM.

Table I. L2 norm with convergence rates for FEM and LRPIM.

LRPIM

Elements/nodes q=0.5 q=0.98 q=1.03 q=1.98 FEM

5∗9 0.2947 0.2945 0.30289 0.46567 0.8803
8∗15 0.0047513 −0.21916 −0.20691 −0.021665 0.3841
12∗23 −0.0585 −0.58382 −0.57044 −0.40262 0.1092
18∗35 −0.186498 −0.96885 −0.95405 −0.72369 −0.1311
24∗47 −0.287316 −1.1609 −1.1879 −0.86332 −0.32731
32∗63 −0.31572 −1.3115 −1.3293 −0.931082 −0.42572
Rate of convergence 0.6671 1.8353 1.8717 1.6201 1.4592
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Figure 9. The velocity vectors of groundwater.

of q=1.98 is slightly better than that of the FEM results. The velocity field can be obtained as

V=(u,v)=− �h
�xi

=−
nt∑
J=1

��J

�xi
h J , i=1,2 (31)

As long as the shape functions are smooth enough, unlike FEM, no smoothing technique is required.
The velocity vectors are illustrated in Figure 9.

7. TWO-PLATE FLOW

Consider the flow over two infinite plates that intersect at the origin with 135◦ angle as shown in
Figure 10.

The analytical solution for the flow potential is

�= 3
4 (r

4/3)cos( 43�) (32)

where (r,�) are the usual polar coordinates. The Dirichlet boundary conditions are considered for
top and right edges, whereas Neumann boundary conditions are considered for left and bottom
edges. The optimal parameters investigated in previous sections, i.e. �c=5.25, �Q =0.75, �s =4.2,
and q=1.03, are considered for the problem. Figure 11 shows the results for a domain with 145
nodes. The relative error is plotted in Figure 11(c), which is defined as

re= �LRPIM−�exact

�exact (33)

where �LRPIM and �exact are equipotential lines computed by the LRPIM method and the closed-
form solution.

In order to study convergence rates, the L2 norm is calculated and compared with the FEM
results, which is shown in Figure 12.
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Figure 10. The domain and boundary conditions for two-plate flow.
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Figure 11. Two-plate flow: (a) domain and nodal arrangements; (b) approximated
function; and (c) relative error.
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As shown, despite higher accuracy of the LRPIM meshless method, the convergence rate is also
higher than that of FEM.

The streamlines and equipotential lines are plotted in Figure 13.
The velocity vectors can be calculated as

V=∇� (34)

where � is equipotential lines and V is the velocity vectors.

8. CONCLUSIONS

A meshless method based on the local radial point interpolation meshless method (LRPIM) has
been presented for solving the problems of two-dimensional potential flows. In this meshless
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method, the Heaviside step function is used as the test function and a local interpolation technique
using RBFs is used to construct the trial function entirely in terms of a set of scattered nodes.
The novelty of the paper is the use of Heaviside weight function in the LRPIM, which does not
need local domain integration and only integrations on the boundary of the local domains are
needed. The results show that the use of a local Heaviside weight function in the LRPIM is highly
accurate and possesses no numerical difficulties. MQ-RBFs were employed and various shape
parameters were examined for q and �c. Effects of quadrature domain size and support domain
size were investigated with different shape parameters. It can be seen that there is no integration
difficulty in the present method, no element matrix assembly is required, and no special treatment
is needed to impose the essential boundary conditions. Compared with FEM, the results are of
higher accuracy, whereas compared with other meshless methods, the implementation procedure is
simple and the computation cost is much lower because of the simple interpolation and the simple
way to construct the global stiffness matrix.

APPENDIX: NOMENCLATURE

�c,q shape parameters
dc characteristic length between node i and its neighbor nodes
rQ radius of the quadrature domain (subdomain)
rs radius of the support domain
�Q dimensionless size of quadrature domain
�c dimensionless shape parameters for MQ (C/dc)
�s dimensionless size of support domain
uh(x, y) radial basis function interpolant
n number of nodes in the support domain
h hydraulic head
�s boundary of the quadrature domain
�Q quadrature domain (local subdomain)
�(x) shape function
� stream function
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